FEDRA emulsion software from the OPERA Collaboration
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ShowRec_Alg_N3.h
Go to the documentation of this file.
1//---------------------------------------------------------------------------------
2//- VARIABLES: related to specific ReconstructionAlgorithms:
3//- N3 ALG:
4//---------------------------------------------------------------------------------
5TMultiLayerPerceptron* N3_TMLP_ANN;
6Bool_t N3_DoTrain=kTRUE;
7// Bool_t N3_DoTrain=kFALSE;
8Double_t N3_Inputvar[24]; // 24 maximal input neurons
9// This array is larger than possible used array for evaluation.
10// The array with the correct size is created, when the N3_ANN_INPUTNEURONS
11// variable is fixed (TMLP class demands arraysize = #inputneurons)
12Int_t N3_Type; // 0: BG, 1: SG
13Int_t N3_ANN_NInput; // number of Inputvariables in total
14TString N3_ANN_Layout="";
15Double_t N3_OutputValue=0;
17
18//=C= Values valid for ShowerReco_Algorithm 11 = N3 ALG: NeuralNetwork
19// Brick data related inputs
20Int_t N3_ANN_PLATE_DELTANMAX; // 0,1,2,3
21// algorithm method related inputs
22Int_t N3_ANN_NTRAINEPOCHS; // 1,2,3,4 = 50,100,150,200
23Int_t N3_ANN_NHIDDENLAYER; // 1,2,3,4 = 2,3,5,7
24Double_t N3_ANN_OUTPUTTHRESHOLD; // 0..10 = 0.5, 0.55, 0.6 ...
26// 1: about same numer of SG and BG tracks are used for training, 0: all BG Tracks are taken
27// this is dependent by the other variables, thus it
28// is explicitely calculated for ease of view
30
31// -------------------------------
32// Calculating Functions:
33// -------------------------------
34void N3_Create_ALG_MLP(TTree* inputtree, Int_t parasetnr);
35void N3_Load_ALG_MLP_weights(TMultiLayerPerceptron* mlp, Int_t parasetnr);
36void N3_Dump_ALG_MLP_weights(TMultiLayerPerceptron* mlp, Int_t parasetnr);
37void N3_FindBestCompliments(EdbSegP* seg, EdbPattern* TestPattern, EdbPVRec* local_gAli, Int_t Downstream, Float_t& mindeltaZ, Float_t& mindT, Float_t& mindR, Float_t& mindMinDist, Int_t &nDifferentSegs );
Double_t N3_OutputValue
Definition: ShowRec_Alg_N3.h:15
Int_t N3_Type
Definition: ShowRec_Alg_N3.h:12
Int_t N3_ANN_NHIDDENLAYER
Definition: ShowRec_Alg_N3.h:23
void N3_ReadOptionFile()
Definition: ShowRec_Alg_N3.cpp:712
void N3_Dump_ALG_MLP_weights(TMultiLayerPerceptron *mlp, Int_t parasetnr)
Definition: ShowRec_Alg_N3.cpp:697
Int_t N3_ANN_INPUTNEURONS
Definition: ShowRec_Alg_N3.h:29
Double_t N3_ANN_OUTPUTTHRESHOLD
Definition: ShowRec_Alg_N3.h:24
Int_t N3_ANN_EQUALIZESGBG
Definition: ShowRec_Alg_N3.h:25
Int_t N3_ANN_PLATE_DELTANMAX
Definition: ShowRec_Alg_N3.h:20
TMultiLayerPerceptron * N3_TMLP_ANN
Definition: ShowRec_Alg_N3.h:5
void N3_FindBestCompliments(EdbSegP *seg, EdbPattern *TestPattern, EdbPVRec *local_gAli, Int_t Downstream, Float_t &mindeltaZ, Float_t &mindT, Float_t &mindR, Float_t &mindMinDist, Int_t &nDifferentSegs)
Definition: ShowRec_Alg_N3.cpp:773
void N3_Create_ALG_MLP(TTree *inputtree, Int_t parasetnr)
Definition: ShowRec_Alg_N3.cpp:656
Int_t N3_ANN_NInput
Definition: ShowRec_Alg_N3.h:13
void N3_Load_ALG_MLP_weights(TMultiLayerPerceptron *mlp, Int_t parasetnr)
Definition: ShowRec_Alg_N3.cpp:683
Int_t N3_TrainNMax
Definition: ShowRec_Alg_N3.h:16
Double_t N3_Inputvar[24]
Definition: ShowRec_Alg_N3.h:8
Int_t N3_ANN_NTRAINEPOCHS
Definition: ShowRec_Alg_N3.h:22
TString N3_ANN_Layout
Definition: ShowRec_Alg_N3.h:14
Bool_t N3_DoTrain
Definition: ShowRec_Alg_N3.h:6
Definition: EdbPVRec.h:148
Definition: EdbPattern.h:273
Definition: EdbSegP.h:21
TMultiLayerPerceptron * mlp
Definition: testBGReduction_By_ANN.C:61