54#if defined USE_ROOT && !defined __CINT__
55#include "smatrix/SMatrix.hh"
56#include "smatrix/SVector.hh"
102 double E(
double rm = 0.)
const;
104#if defined USE_ROOT && !defined CINTOBJECT
152 std::ostream&
print( std::ostream& os )
const;
259#include "VtKalman.icc"
Definition: CMatrix.hh:63
Definition: VtMatrix.hh:49
Definition: VtSqMatrix.hh:50
Definition: VtSymMatrix.hh:49
Definition: VtVector.hh:45
Definition: VtKalman.hh:70
const MATRIX::VtVector calc_AGpc(void) const
Definition: VtKalman.C:111
const Relation * rel
Definition: VtKalman.hh:218
double xn() const
$n_x = t_x * e_z$
MATRIX::VtMatrix k_GB
Definition: VtKalman.hh:232
const MATRIX::VtVector & nalpc() const
$\vec{n} = (n_x,n_y,n_z)$
Kalman(const Relation *const relation)
Definition: VtKalman.C:40
MATRIX::CMatrix G
Definition: VtKalman.hh:219
void smooth(double z, const MATRIX::VtVector &xvs, const MATRIX::VtSymMatrix &Cn)
Definition: VtKalman.C:450
double chi2s() const
smoothed $\chi^2$
MATRIX::VtVector k_alpc
Definition: VtKalman.hh:240
MATRIX::VtVector k_xv
Definition: VtKalman.hh:224
MATRIX::VtVector pvec() const
$\vec{v} = (p_x,p_y,p_z)$ refitted mom. vector
MATRIX::VtVector k_nalpc
Definition: VtKalman.hh:242
void alp_init(void)
fill $\vec{\alpha}^{(0)}$
void init()
initialize the kalman structure
Definition: VtKalman.C:80
const MATRIX::VtSymMatrix & CINV() const
bool filter(double z, const MATRIX::VtSymMatrix &prCINV, const MATRIX::VtVector &prkal_xv)
Definition: VtKalman.C:278
double erg() const
$E_i=\sqrt{m^2 + p^2}$, $m$ = track rest-mass
double tx() const
refitted $t_x$
void alpc_init(void)
fill $\vec{\alpha}_c^{(0)}$
double k_chi2s
Definition: VtKalman.hh:245
void calc_qvs(const MATRIX::VtVector &xvs)
Definition: VtKalman.C:203
MATRIX::VtVector k_alp
Definition: VtKalman.hh:241
double ex() const
refitted $e_x$
MATRIX::VtVector tvec() const
$\vec{v} = (t_x,t_y,1.)$ refitted slope vector
double k_erg
Definition: VtKalman.hh:243
std::ostream & print(std::ostream &os) const
called by operator<<()
Definition: VtKalman.C:72
double p() const
refitted $p$
const MATRIX::VtSymMatrix & W() const
double zn() const
$n_z = 1/\sqrt{1 + t_x^2 + t_y^2}$
double k_chi2
Definition: VtKalman.hh:244
const MATRIX::VtSymMatrix & DS() const
const MATRIX::VtVector & xnk() const
MATRIX::VtVector k_pc
Definition: VtKalman.hh:229
double E(double rm=0.) const
refitted Energy $E = \sqrt{p^2 + m^2}$
const MATRIX::VtSqMatrix & F() const
double ty() const
refitted $t_y$
const MATRIX::VtVector & xv() const
const MATRIX::VtVector calc_pcAx(const MATRIX::VtVector &xk) const
Definition: VtKalman.C:158
double py() const
refitted $p_y$
bool use_momentum() const
double chi2() const
$\chi^2$ contribution of track
void calc_ealpc(void)
calculate unit vector $\vec{\alpha}_c/|\vec{\alpha}_c|$, energy from alpc
Definition: VtKalman.C:574
double ey() const
refitted $e_y$
MATRIX::VtSymMatrix k_DS
Definition: VtKalman.hh:239
double set_chi2(const double chi2)
double ez() const
refitted $e_z$
const MATRIX::VtVector & qvs() const
$\vec{v} = (t_x,t_y,p)$
double pz() const
refitted $p_z$
MATRIX::VtVector & qvs_nc()
return non-const reference to qvs
~Kalman()
Definition: VtKalman.C:67
double px() const
refitted $p_x$
double k_tx
Definition: VtKalman.hh:221
MATRIX::VtMatrix k_WBG
Definition: VtKalman.hh:233
MATRIX::VtVector k_qv
Definition: VtKalman.hh:228
double yn() const
$n_y = t_y * e_z$
const MATRIX::VtVector calc_dp(double z, const MATRIX::VtVector &xk, const MATRIX::VtVector &qk) const
Definition: VtKalman.C:131
bool inverse_filter(double z, const MATRIX::VtSymMatrix &CINVn, const MATRIX::VtSymMatrix &prCINV, const MATRIX::VtVector &kal_xvn)
Definition: VtKalman.C:509
MATRIX::VtSqMatrix k_ES
Definition: VtKalman.hh:238
MATRIX::VtVector k_xnk
Definition: VtKalman.hh:230
double k_ty
Definition: VtKalman.hh:222
double calc_dchi2(double z, const MATRIX::VtSymMatrix &prCINV, const MATRIX::VtVector &xk, const MATRIX::VtVector &prxk, const MATRIX::VtVector &qk) const
Definition: VtKalman.C:236
MATRIX::VtVector k_qvs
Definition: VtKalman.hh:223
const MATRIX::VtSymMatrix & C() const
const MATRIX::VtVector & alpc() const
state vector $\vec{\alpha_c}=(t_x,t_y,p)$
const MATRIX::VtSqMatrix & ES() const
const MATRIX::VtVector & alp() const
state vector $\vec{\alpha}=(t_x,t_y,p)$
MATRIX::VtSqMatrix k_F
Definition: VtKalman.hh:237
MATRIX::VtSymMatrix k_CINV
Definition: VtKalman.hh:236
MATRIX::VtVector evec() const
$\vec{v} = (e_x,e_y,e_z)$ unit vector along refitted track
MATRIX::VtSymMatrix k_W
Definition: VtKalman.hh:231
bool k_use_momentum
Definition: VtKalman.hh:220
MATRIX::VtSymMatrix k_C
Definition: VtKalman.hh:235
void calc_pc(double z)
Definition: VtKalman.C:213
const MATRIX::VtVector calc_qk(const MATRIX::VtVector &xk) const
Definition: VtKalman.C:185
double filter_chi2(double z, double prChi2, const MATRIX::VtSymMatrix &prCINV, const MATRIX::VtVector &prkal_xv)
Definition: VtKalman.C:434
MATRIX::CMatrix k_Gb
Definition: VtKalman.hh:234
Definition: VtRelation.hh:51
Definition: VtDistance.hh:30
std::ostream & operator<<(std::ostream &os, const VtIni &t)
Definition: VtIni.hh:83