37#include "vt++/VtTrack.hh"
39template <
unsigned int NTR>
class SVertex;
48template <
unsigned int NTR>
63 float x(
float z)
const;
65 float y(
float z)
const;
123 unsigned short int ndf()
const;
161 std::ostream&
print( std::ostream& )
const;
186template <
unsigned int NTR>
188 return vt.
print( os );
191#include "SKalman.icc"
std::ostream & operator<<(std::ostream &os, const SKalman< NTR > &vt)
Definition: SKalman.hh:187
Definition: SKalman.hh:49
SVector< double, 3 > k_qv
Definition: SKalman.hh:171
float p() const
refitted momentum
bool propagate(const double z)
dummy function: do nothing
float energy(double mass=0.) const
$E = \sqrt{m^2 + p^2}$
double k_ty
Definition: SKalman.hh:167
float y(float z) const
refitted Track $y$ position at $z$
unsigned short int ndf() const
returns always 0
double k_tx
Definition: SKalman.hh:166
bool smooth()
smoother step
float rap(double mass=0.) const
Rapidity $y = \frac{1}{2}\ln(\frac{E+p_z}{E-p_z})$.
bool smoothC()
cov. matrices of smoothed parameters
SMatrix< double, 3 > k_CINV
Definition: SKalman.hh:173
const SVector< double, 3 > & xv() const
SVector< double, 3 > evec() const
$\vec{v} = (e_x,e_y,e_z)$ unit vector along refitted track
SVector< double, 3 > tvec() const
$\vec{v} = (t_x,t_y,1.)$ refitted slope vector
float x(float z) const
refitted Track $x$ position at $z$
float phi() const
refitted azimuthal angle $\phi$ [deg]
float theta() const
refitted polar angle $\theta = \cos^{-1}(e_z)$ [deg]
float cov_y(double dz=0.) const
returns 0
double k_chi2
Definition: SKalman.hh:168
float cov_ty() const
returns 0
const SMatrix< double, 3 > & KCINV() const
float ty() const
refitted track slope $t_y$
const Track * track_
Definition: SKalman.hh:164
SVector< double, 3 > xvec() const
vertex position
float tx() const
refitted track slope $t_x$
SMatrix< double, 3 > k_C
Definition: SKalman.hh:172
SMatrix< double, 3 > k_W
Definition: SKalman.hh:176
void invalid()
does nothing
const SMatrix< double, 3 > & ES() const
SMatrix< double, 3 > k_ES
Definition: SKalman.hh:178
void collect(vector< Track * > &c) const
collect pointers
float cov_x(double dz=0.) const
returns 0
SKalman(const Track &t, const SVertex< NTR > &v)
const SMatrix< double, 5 > & CINV() const
returns a 0 matrix
SVector< double, 5 > k_pc
Definition: SKalman.hh:174
float chi2() const
Kalman $\chi^2$. Use only if you know what it is!
SMatrix< double, 3 > k_F
Definition: SKalman.hh:177
SVector< double, 3 > k_xv
Definition: SKalman.hh:170
float pz() const
momentum along
std::ostream & print(std::ostream &) const
used by operator<<()
float z() const
refitted Track $z$ position (= vertex $z$ position)
SMatrix< double, 3 > k_DS
Definition: SKalman.hh:179
float xf(double mass=0.) const
bool isValid() const
returns always true
SVector< double, 3 > k_qvs
Definition: SKalman.hh:169
const SMatrix< double, 5 > & COV() const
returns a 0 matrix
const SVertex< NTR > * vtx_
Definition: SKalman.hh:165
bool filter(const unsigned int I)
filter step
float y() const
refitted Track $y$ position (= vertex $y$ position)
float x() const
refitted Track $x$ position (= vertex $x$ position)
SMatrix< double, 3, 5 > k_WBG
Definition: SKalman.hh:175
bool operator==(const Track &rhs) const
compare Track pointers
float cov_p() const
returns 0
SVector< double, 3 > pvec() const
$\vec{v} = (p_x,p_y,p_z)$ refitted mom. vector
int charge() const
particle charge: -1 for neg. +1 for pos. & neutrals
float cov_tx() const
returns 0
const SMatrix< double, 3 > & KCOV() const
float pt() const
refitted transverse Track momentum $p_t$
const SMatrix< double, 3 > & F() const
float eta() const
refitted rapidity $\eta = -\log\tan(\theta/2.)$
const SMatrix< double, 3 > & DS() const
Definition: SVertex.hh:73
double dz
Definition: Track.h:46
TTree * t
Definition: check_shower.C:4
float mass
Definition: check_vertex.C:21